Dear Dr. Singh

The Editorial Board of the IEEE Transactions on Industrial Electronics would be most grateful for your expert assistance in reviewing manuscript No. 17-TIE-2053 entitled "Power Supply Analysis and Design for DBD-type Ozonizer Under the Current Zero Crossing and Phase Locking Inductive Control" which has been submitted, as a Regular paper, for possible publication.

The Abstract of the Manuscript No. 17-TIE-2053 follows the text of this message.

Note that we expect the review be completed within 28 days.

The site URL is https://mc.manuscriptcentral.com/tie-ieee.

Please let me know if you agree to serve as a Reviewer by clicking one of the links below:

*** PLEASE NOTE: This is a two-step process. After clicking on the link, you will be directed to a webpage to confirm. ***

Agreed: https://mc.manuscriptcentral.com/tie-ieee?URL_MASK=340a461783c8486194a0cf322b5b3b6f

Declined: https://mc.manuscriptcentral.com/tie-ieee?URL_MASK=868dd5dd26c44d419e66be72ec3b9d37

Unavailable: https://mc.manuscriptcentral.com/tie-ieee?URL_MASK=86e6f222ac164b2eb5d6dc095dd7e65c

I will very much appreciate your prompt response.

Best Regards,
Concettina Buccella

Concettina Buccella PhD
Associate Editor
DISIM-University of L'Aquila
67100 L'Aquila - Italy
concettina.buccella@univaq.it

**

Abstract--- In order to solve the ubiquitous problems of low discharge power factor, large-volume transformer, high noise and that injecting a large amount of harmonic to power grid, which caused by the low or medium power frequency on DBD-type ozone generator, this paper presents a scheme of high frequency and high voltage inverter power supply under the inductive control of current zero crossing phase locked PWM mode. Based on the analysis of the turn-on and turn-off condition of the switch devices in the inverter circuit and the driving factors of discharge and sleep state in the ozone generator, the discharge engine situation of power supply under the inductive control and the various working modality of the control system are obtained. After the modal analysis, the mathematical models of the operating frequency of the inverter, the peak voltage and frequency of the generator and so on, are derived. Finally,
the theoretical analysis and experimental results are given through the analysis of the main parameters. Through comparative analysis, the feasibility of the modal analysis and the correctness of the theoretical derivation are verified, which is useful for the engineering practice.
Dear Mr. Singh:

Thank you for reviewing Manuscript No. 17-TIE-2053 entitled "Power Supply Analysis and Design for DBD-type Ozonizer Under the Current Zero Crossing and Phase Locking Inductive Control" for the IEEE Transactions on Industrial Electronics as a Regular paper submission.

On behalf of the Editorial Board of the IEEE Transactions on Industrial Electronics, we appreciate the voluntary contribution that each reviewer gives to the Journal. We thank you for your participation in the online review process and hope that we may call upon you again to review future manuscripts.

Sincerely,

Prof. Concettina Buccella, Associate Editor, concettina.buccella@univaq.it, c.buccella@ieee.org